

0968-0896(94)00136-7

Structure—Activity Studies Leading to Potent Chloride Channel Blockers: 5*e-tert*-Butyl-2-[4-(substituted-ethynyl)phenyl]-1,3-dithianes

Qing X. Li and John E. Casida*

Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3112 U.S.A.

Abstract—5e-tert-Butyl-2e-[4-(substituted-ethynyl)phenyl]-1,3-dithianes with selected functional groups (R) on the ethynyl moiety are potent blockers of the GABA-gated chloride channel measured as inhibitor concentration (IC₅₀) for 4-n-[³H]propyl-1-(4-ethynylphenyl)-2,6,7-trioxabicyclo[2.2.2]octane binding to bovine brain membranes. The terminal R substituents were introduced by coupling 5e-tert-butyl-2e-(4-iodophenyl)-1,3-dithiane with HC \equiv CR or 5e-tert-butyl-2e-(4-ethynylphenyl)-1,3-dithiane with XR. The potency of the parent compound (R=H) with an IC₅₀ of 21 nM is equaled or exceeded by up to 7-fold (i.e. IC₅₀ = 3-21 nM) by several carboxylic acids [R = (CH₂) $_n$ CO₂H (n = 0-3), (CH₂) $_n$ OCH₂CO₂H (n = 1-3), and CH₂SCH₂CO₂H] and their esters and two phosphonic acids (CH₂CH₂PO₃H₂ and CH₂OCH₂PO₃H₂) but not their esters. These carboxylic and phosphonic acids (and their salts) include the most potent water-soluble chloride channel blockers known. Conversion to the monosulfones increases the activity of the R = H and CH₂OH analogs by 1.2- to 3-fold but decreases that of the R = CH₂CH₂CO₂R' (R' = H or CH₃) derivatives by 3- to 13-fold. Quantitative structure-activity analyses for 44 2-[4-(substituted-ethynyl)phenyl]-dithianes suggests that the principal feature of the R substituent for high activity is its polarizable volume modeled as molecular refractivity, i.e. this substituent is not a well-defined pharmacophore and undergoes a structurally non-specific interaction with the receptor. These observations lay the background for preparing candidate affinity probes.

Introduction

The γ-aminobutyric acid (GABA)-gated chloride channel is the target for the polychlorocycloalkane insecticides (such as the cyclodienes, lindane and toxaphene) and a variety of well-known convulsants (picrotoxinin, tetramethylenedisulfotetramine and 2-phospha-1,3,7-trioxabicyclo[2.2.2]octanes). Exceptional potencies at this non-competitive blocker (NCB) site are observed with 4-tert-butyl-1-(4-ethynylphenyl)-2,6,7-trioxabicyclo-[2.2.2]octane^{4,5} and the trans (2e,5e) isomer of 5-tert-butyl-2-(4-ethynylphenyl)-1,3-dithiane⁶⁻⁸ and its 2,2-dioxide (dithiane monosulfone). The 1,3-dithianes and their monosulfones are more stable in acid than the corresponding 2,6,7-trioxabicyclo[2.2.2]octanes and are, therefore, preferred in studies designed to optimize structure for biological activity combined with other molecular features.

The development of a photoaffinity ligand and an affinity column based on the NCB site of the GABAgated chloride channel requires first defining the molecular regions where major variations can be made in the functional groups with minimal effects on potency. The present study including our preliminary report⁹ indicates that the optimal compound for derivatization to achieve this goal is 5e-tert-butyl-2e-[4-(substitutedethynyl)phenyl]-1,3-dithiane since it combines three important features: (1) outstanding potency at the receptor⁸ assayed as inhibition of the binding of 4-n-[3H]propyl-1-(4-ethynylphenyl)-2,6,7-trioxabicyclo[2.2.2]octane ([3H]EBOB) to bovine brain membranes; 9 (2) a terminal substituent that can be easily functionalized;⁹ (3) thio sites suitable for conversion to monosulfones^{7,8} (Fig. 1). Our preliminary studies varying the terminal sub-

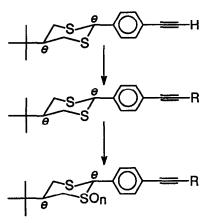


Figure 1. Structures of compounds examined. R=H, alkane, alcohol or derivatized alcohol, carboxylic acid or ester, phosphonic acid or ester, sulfonamide or other substituent. n=1(e) or 2.

stituent (R) of the ethynyl moiety revealed surprisingly high potency not only for R = H, CH_3 or CH_2OH but also for $R = (CH_2)_n CO_2 H$ and $(CH_2)_n PO_3 H_2$ of suitable chain lengths. Adequate exploration of the structure-activity relationships (SAR) for R substituents required synthesis of a much greater variety and number of derivatives for evaluation as NCBs and quantitative SAR analyses. It was also important to examine the influence on activity of the equatorial (2e) and axial (2a) dithianes and of their oxidation products. The primary goal of the present investigation is to define the optimal R substituent of various types, particularly those with functional groups conferring high water solubility and appropriate for preparing candidate affinity probes.

Chemistry

Synthetic routes are shown in Scheme I for 51 (2e,5e)-1,3-dithianes (reactions A-D) and 10 of their sulfoxidation products (reaction E). Two (2a,5e)-1,3-dithianes were also prepared by routes A and D (reactions not illustrated). Reaction A involved condensation of 2-tertbutylpropan-1,3-dithiol (a) with 4-iodobenzaldehyde to obtain the iodophenyl-dithiane (b), with 4-ethynylbenzaldehyde to give the ethynylphenyl-dithiane (1), or with 4-(4-methoxycarbonyl-1-butynyl)benzaldehyde to obtain 18-2a, each in quantitative yield. In reaction B, palladium-catalyzed alkynylation of b with appropriate alkynes afforded 2-6, 8-12, 18, 20, 22, 24, 26, 27, 29, 31, 33, 35, 37, 39, 44, 45, 47, 49 and 51. Reaction C involved acylation of the ethynyl substituent to give 14 and 48, alkylation to obtain 16 and 50, and phosphorylation to yield 41 and 43. Reaction D, a functional group transformation of the R substituent, utilized esterification of 6 to obtain 7, aminolysis of 14 to 46, acidic or basic hydrolysis of the corresponding esters to carboxylic acids 13, 15, 17, 19, 21, 23, 25, 28, 30, 32, 34, 17-SO₂, and 17-2a, and selective de-ethylation of appropriate ethyl phosphonates to yield the phosphonic acids 36, 38, 40, and 42. Sulfoxidation products were synthesized by palladium-catalyzed alkynylation of b-SO or b-SO₂ with appropriate alkynes (route B), tosylation of alcohols with p-toluenesulfonyl (ts) chloride (route D), and sulfoxidation of the corresponding 1,3-dithianes (route E). Detailed syntheses with references and characterization data for the new compounds are presented in the Experimental section and Table 1.

Structure-Activity Relationships

Effect of the terminal group (R) of the ethynyl substituent on the potency of 5e-tert-butyl-2e-[4-(substituted-ethynyl)

phenyl]-1,3-dithianes as inhibitors of $[^3H]EBOB$ binding (Table 2)

General. Fifty-one compounds with different functional groups on the acetylene moiety were examined to establish their concentations for 50 % inhibition (IC₅₀s) of [3 H]EBOB binding to the bovine brain GABA-gated chloride channel. These compounds vary in potency by > 3000-fold. Sixteen of them are highly effective with IC₅₀s of < 20 nM and they include water-soluble carboxylic and phosphonic acids. Some of the compounds with low potencies (IC₅₀s ≥ 186 nM) have R substituents as follows: C₂₋₄ *n*-alkanes; C₂₋₃ alcohols; ethyl phosphonates; sulfonamides; others including amide, diethyl acetal, trifluoroketone, amine, alkyne and bromoalkane.

Reference compound (1), alkanes (2-5), alcohols (6,8,10-12) and derivatized alcohols (7,9)

Addition to 1 of terminal alkyl substituents (2–5) results in progressively lower receptor potency with increasing chain length. Although of low potency, the *n*-alkanols (6, 8 and 10) are more effective than the secondary and tertiary alcohols (11 and 12). Alcohol 6 is similar in potency to its formate ester (7), possibly undergoing facile hydrolysis, whereas derivatization of alcohol 8 as its tetrahydropyranyl ether (9) decreases its potency.

Carboxylic acids and esters (13-35). The terminal carboxylic acid and ester substituents have a remarkable effect in conferring high potency based on two observations. First, 19 of the 23 compounds examined have IC_{50} values of 3-39 nM. Second, the carboxylic acid functional group in compounds 13, 15, 17 and 19 increases the potency by 5- to 2750-fold relative to the corresponding alkanes (2-5). The optimal substituents are the C_3 and C_4 carboxylic acids (Fig. 2). The receptor potencies of the methyl esters (14, 18, 20, 22 and 24)

Scheme I. Synthesis of 5e-tert-butyl-2e-[4-(substituted-ethynyl)phenyl]-1,3-dithianes and their S-oxidation products. n = 1(e) or 2. Reactions: A, ArCHO, HCO₂H; B, HC \equiv CR, (Ph₃P)₂PdCl₂, CuI, Et₃N; C, acylation, alkylation or phosphorylation; D, esterification, aminolysis, acidic or basic hydrolysis, de-ethylation of appropriate phosphonates, and tosylation; E, MCPBA, CH₂Cl₂ or KMnO₄, acetone/H₂O.

Table 1. ¹H and ¹³C NMR data and melting points for new 5e-tert-butyl-2e-[4-(substituted-ethynyl)phenyl]-1,3-dithianes and related compounds (see Scheme I)^a

R	_		R substituent, NMR, δ ppm ^c			
	Entry ^b	M.p.(°C)	¹H	¹³ C		
(CH ₂) ₃ CH ₃	5	123-125	0.93(3H),1.45(2H), 1.58(2H),2.39(2H)	13.7,19.1,22.0,30.8		
CH ₂ OTs	6-SO-ts	146(dec)	2.38(3H),4.95(2H), 7.45(2H),7.85(2H)	21.6,69.1,128.2(x2), 128.6, 129.8(x2),145.1		
СН₂ОН	6-SO ₂	222-223	4.49(2H)	50.6		
CH₂OTs	6-SO ₂ -ts	160(dec)	2.38(3H),4.95(2H), 7.45(2H),7.85(2H)	21.6,67.0,128.2(x2), 128.3,129.8(x2),145.1		
СН₂ОСНО	7	134-135	4.99(2H),8.11(1H)	52.2,160.0		
(CH ₂) ₂ OC ₅ H ₉ O	9	139	1.52-1.75(6H),2.70(2H), 3.61(2H),3.90(2H), 4.69(1H)	, 19.3,20.9,25.4,30.5, 62.1,65.6,98.7		
(CH ₂) ₂ CO ₂ H	17-SO ₂	204(dec)	2.60(2H),2.69(2H)	15.5,33.3,172.7		
(CH ₂) ₂ CO ₂ Me	18-SO	141-143	2.64(2H),2.72(2H), 3.70(3H)	15.2,33.1,51.3,172.0		
(CH ₂) ₂ CO ₂ Me	18-SO ₂	168-169	2.62(2H),2.73(2H), 3.71(3H)	15.3,33.2,50.8,172.1		
(CH ₂) ₃ CO ₂ H	19	170-171	1.90(2H),2.47(2H), 2.48(2H)	18.7,24.0,33.3,176.5		
(CH ₂)₃CO ₂ Me	20	102	1.92(2H),2.47(2H), 2.50(2H),3.68(3H)	18.9,23.8,32.8, 50.9,173.5		
(CH ₂) ₅ CO ₂ H	21	148-151	1.50-1.71(6H), 2.38(2H),2.41(2H)	19.3,24.2,28.3(x2), 33.8,179.5		
(CH ₂) ₅ CO ₂ Me	22	68-72	1.44-1.70(6H),2.33(2H), 2.40(2H),3.66(3H)	19.1,24.5,28.3(x2), 33.9,50.9,174.0		
(CH ₂)₅CO ₂ H	23	159-162	1.32(8H),1.61(4H), 2.35(2H),2.38(2H)	19.4,24.6,28.7,28.8, 28.9,29.0,29.1,34.0, 179.8		
(CH ₂) ₈ CO ₂ Me	24	79-80	1.31(8H),1.60(4H), 2.29(2H),2.37(2H), 3.65(3H)	19.4,24.9,28.6,28.8, 28.9,29.0,29.1,34.1, 50.9,174.2		

(continued)

Table 1. ¹H and ¹³C NMR data and melting points for new 5e-tert-butyl-2e-[4-(substituted-ethynyl)phenyl]-1,3-dithianes and related compounds (see Scheme I)^a — contd.

R			R substituent, NMR, δ ppm ^c		
	Entryb	M.p.(°C)	'H	¹³ C	
CH ₂ OCH ₂ CO ₂ H	25	145	4.31(2H),4.53(2H)	59.1,65.7,175.2	
CH ₂ OCH ₂ CO ₂ Me	26	79-80	3.78(3H),4.27(2H), 4.52(2H)	51.9,59.1,66.2,170.3	
ÇH2OCH2CO2Et	27	93	1.29(3H),4.22(2H), 4.24(2H),4.52(2H)	14.1,58.9,60.9, 66.2,169.8	
(CH ₂) ₂ OCH ₂ CO ₂ H	28	157	2.75(2H),3.76(2H), 4.16(2H)	20.6,68.0,69.8,172.4	
(CH ₂) ₂ OCH ₂ CO ₂ Me	29	82-83	2.67(2H),3.68(2H), 3.69(3H),4.10(2H)	20.7,51.8,68.3, 69.9,170.6	
(CH ₂) ₃ OCH ₂ CO ₂ H	30	157-158	1.91(2H),2.54(2H), 3.71(2H),4.15(2H)	16.1,28.5,67.9, 70.5,174.6	
(CH ₂) ₃ OCH ₂ CO ₂ Me	31	94-95	1.83(2H),2.46(2H), 3.60(2H),3.68(3H), 4.04(2H)	16.1,28.7,51.8, 68.4,70.3,170.8	
(CH ₂) ₄ OCH ₂ CO ₂ H	32	116-120	1.69(2H),1.81(2H), 2.45(2H),3.63(2H), 4.12(2H)	19.2,25.1,28.6, 67.7,71.5,175.2	
(CH ₂) ₄ OCH ₂ CO ₂ Et	33	oil	1.29(3H),1.70(2H), 1.79(2H),2.45(2H), 3.58(2H),4.07(2H), 4.22(2H)	14.3,19.2,25.2,28.7, 60.8,68.3,71.3,170.5	
CH ₂ SCH ₂ CO ₂ H	34	159	3.47(2H),3.64(2H)	21.1,32.6, 176.0	
CH ₂ SCH ₂ CO ₂ Et	35	83	1.28(3H),3.45(2H), 3.64(2H),4.19(2H)	14.2,21.0,32.9,61.5,170.0	
CH ₂ OCH ₂ PO ₃ H ₂	38 ^d	183-184	3.63(2H),4.47(2H)	59.6,65.1	
CH ₂ OCH ₂ P(O)(OEt) ₂	39	76	1.36(6H),3.94(2H), 4.19(4H),4.49(2H)	16.3(x2),60.6,62.4(x2), 62.9	
) ₂ P(O)OH ^e	40	245 (dec.)	7.03(1H)	-	
) ₂ P(O)OEt ^e	41 ^d	201-203	1.47(3H),4.31(2H)	16.2,63.1	

Table 1. ¹H and ¹³C NMR data and melting points for new 5e-tert-butyl-2e-[4-(substituted-ethynyl)phenyl]-1,3-dithiancs and related compounds (see Scheme I)^a — contd.

R	Entryb	M.p.(°C)	R substituent, NMR, δ ppm ^c		
			1H	¹³ C	
PO ₃ H ₂	42 ^f	181-185	-	-	
P(O)(OEt) ₂	43 ^d	91-94	1.40(6H),4.22(4H)	16.1(x2),63.3(x2)	
CH₂NHSO₂Me	44	181	3.11(3H),4.18(2H), 4.84(1H)	41.5 ^g	
CH₂NHTs	45	200	2.34(3H),4.07(2H), 4.81(1H),7.34(2H), 7.80(2H)	21.5,33.8,127.4(x2), 131.8(x2),136.9,143.7	
C(O)NH ₂	46	259-260	7.86(1H),8.34(1H)	153.7	
CH(OEt) ₂	47	115-121	1.25(6H),3.66(2H), 3.81(2H),5.48(1H)	15.2(x2),61.0(x2),91.8	
C(O)CF ₃	48	142-143	-	116.6,219.4	
CH ₂ NMe ₂	49	145-146	2.36(6H),3.47(2H)	44.2(x2),48.5	
CH ₂ C≡CH	50	130(dec)	2.12(1H),3.40(2H)	10.3,69.0,77.8	
CH ₂ CH ₂ Br	51	149	2.96(2H),3.50(2H)	23.8,29.5	

^{*}All compounds gave appropriate [M]* by LRMS. In addition, HRMS data on representative compounds of each type and some analytical data from combustion analyses are given in the text.

are 1.3- to 20-fold lower than those of the corresponding carboxylic acids (13, 17, 19, 21 and 23). The low potency of 15 and 16 as chloride channel blockers may be due to their chemical instability (observed during synthesis and purification and possibly associated with propargylic rearrangement).

The alkoxyacetic acids and esters (25–33) are unusually potent in two respects (Fig. 2); they are as effective or more so than their analogs with methylene in place of oxygen (25 and 26 vs 19 and 20; 30 and 31 vs 21 and 22); there is little change in potency (0.9- to 1.7-fold) of the alkoxyacetic acids on forming their methyl and ethyl esters. Accordingly, high potency is retained even with a 5 to 10-atom extension from the ethynyl substituent (compounds 25–33).

The beta methylene of 19 (the most potent carboxylic

acid) can be replaced with oxygen (25) or sulfur (34) with complete retention of potency for the carboxylic acids and greatly increased potency for the corresponding esters (20 vs 26, 27 and 35). It, therefore, appears that an oxygen or sulfur beta to the carbonyl moiety confers much better receptor fit than a beta methylene, possibly owing to the greater electron density facilitating positioning of this terminal substituent.

Phosphonic acids and esters (36-43). Replacement of the carboxylic acid or ester substituent by a phosphonic acid or ester functionality is poorly effective for the simplest compounds in the series [R = CO₂H and CO₂Me (13 and 14) vs PO₃H₂ and P(O)(OEt)₂ (42 and 43)]. However, with longer chains, this replacement yields highly potent phosphonic acids (36 and 38) but not their esters (37 and 39). The bis/ethynylphenyldithiane) analogs (40 and 41) are inactive.

bAbbreviations: SO, monosulfoxide with equatorial oxygen; SO₂, monosulfone.

[°]NMR spectra were run in CDCl₃ except 19 and 28 in CDCl₃/CD₃OD, 42 in CD₃OD, 38 and 46 in DMSO-d₆, and 17-SO₂ in acetone-d₆. d³¹P NMR: δ 18.46 (38); -21.78 (41); -8.48 (43).

bis(Ethynylphenyldithiane).

FTIR (KBr) of 42: 1017 (s, PO₂ sym), 1175 (s, PO₂ asym), 2192 (sh, C = C), 2900 (br, OH).

^gOnly ¹³C signal observed.

Table 2. Effect of the terminal group (R) of the ethynyl substituent on the potency of 5e-tert-butyl-2e-[4-(substituted-ethynyl)phenyl]-1,3-dithianes as inhibitors of the GABA-gated chloride channel ([3H] EBOB binding)

R	Entry ^a	IC ₅₀ , nM ^b		
Reference Compound				
Н	1	21		
Alkanes				
СН,	2	35		
CH ₂ CH ₃	3	690		
(CH ₂) ₂ CH ₃	4	6700		
(CH2)3CH3	5	11000		
Alcohols and Derivatized Alcohols				
CH₂OH	6 (7,CHO)	76	(60, CHO)	
(CH ₂) ₂ OH	8 (9,C ₅ H ₉ O)	400	(5000, C ₅ H ₉ O)	
(CH ₂) ₃ OH	10	410		
CH(OH)CH ₃	11	3100		
C(CH ₃) ₂ OH	12	>10000		
Carboxylic Acids and Esters				
CO₂H	13 (14,Me)	7	(9, Me)	
CH ₂ CO ₂ H	15 (16,Et)	23	(460, Et)	
(CH ₂) ₂ CO ₂ H	17 (18,Me)	5	(17, Me)	
(CH ₂) ₃ CO ₂ H	19 (20,Me)	4	(39, Me)	
(CH ₂) ₅ CO ₂ H	21 (22,Me)	33	(137, Me)	
(CH ₂) ₈ CO ₂ H	23 (24,Me)	3100	(8200, Me)	
CH ₂ OCH ₂ CO ₂ H	25 (26,Me; 27,Et)	3	(4, Me; 5, Et)	
(CH ₂) ₂ OCH ₂ CO ₂ H	28 (29,Me)	10	(12, Me)	
(CH ₂) ₃ OCH ₂ CO ₂ H	30 (31,Me)	11	(13, Me)	
(CH ₂)₄OCH ₂ CO ₂ H	32 (33,Et)	33	(30, Et)	
CH₂SCH₂CO₂H	34 (35,Et)	4	(11, Et)	
Phosphonic Acids and Esters				
(CH2)2PO3H2	36 (37,Et ₂)	10	(3000, Et ₂)	
CH ₂ OCH ₂ PO ₃ H ₂	38 (39,Et ₂)	8	(673, Et ₂)	
) ₂ P(O)OH ^c	40 (41,Et)	>10000	(>5000, Et)	
PO ₃ H ₂	42 (43,Et ₂)	1217	(3970, Et ₂)	
Sulfonamides	**			
CH₂NHSO₂Me	44	3183		
CH ₂ NHTs	45	>10000		
Others				
C(O)NH ₂	46	186		
CH(OEt) ₂	47	820		
C(O)CF ₃	48	7200		
CH ₂ NMe ₂	49	>10000		
CH ₂ C ≈ CH	50	330		
CH₂CH₂Br	51	>10000		

^aParentheses designate formate ester (7), tetrahydropyranyl ether (9) and methyl or ethyl ester (other cases).

^bData for dithianes 1-4, 6, 8, 10-18, 36 and 37 from our preliminary report⁹ which gives partial characterization data for these compounds.

^cbis(Ethynylphenyldithiane).

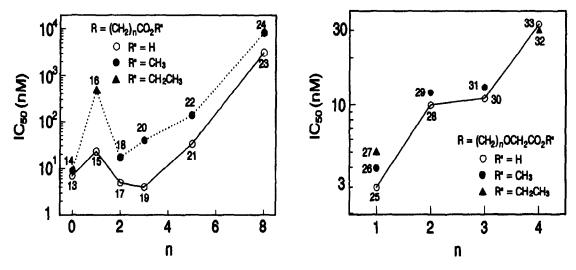


Figure 2. Effect of terminal carboxylic, alkylcarboxylic or alkoxyacetic acid or ester group (R) of the substituted-ethynyl moiety on receptor potency of 5e-tert-butyl-2e-[4-(substituted-ethynyl)phenyl]-1,3-dithianes. Compound numbers for the data points refer to Table 2.

Table 3. Effect of trans or cis isomerism on the potency of 5e-tert-butyl-2-[4-(substituted-ethynyl)phenyl]-1,3-dithianes as inhibitors of the GABA-gated chloride channel ([3H]EBOB binding)

R	Entry		IC ₅₀ , nM		IC _{so} Ratio
	2 <i>e</i>	2 <i>a</i>	2e	2 <i>a</i>	2e : 2a
Н	1	1-2 <i>a</i>	21 (4ª)	(8ª)	(1:2)
CH ₂ CH ₂ CO ₂ H	17	17-2a	5	10	1:2
CH ₂ CH ₂ CO ₂ Me	18	18-2 <i>a</i>	17	15	1:1

^aMouse brain receptor IC₅₀ from Wacher et al.⁸

Table 4. Effect of sulfoxidation on the potency of 5e-tert-butyl-2e-[4-(iodo- or substituted-ethynyl)phenyl]-1,3-dithianes as inhibitors of the GABA-gated chloride channel ([3H]EBOB binding)

	Entry ^a		IC ₅₀ , nM ^a		IC ₅₀ Ratio
4-Substituent	s,s	S,SO ₂	s,s	S,SO ₂	S,S:S,SO ₂
I	b	b-SO ₂	2800	160	17.5 : 1
C = CH	1	1-SO ₂	21	7	3.0 : 1
$C = CCH_2OH$	6	6 -SO ₂	76	63	1.2 : 1
$C = CCH_2CH_2CO_2Me$	18	18-SO ₂	17	59	0.30 : 1
$C = CCH_2CH_2CO_2H$	17	17-SO ₂	5	67	0.075 : 1

^aIC₅₀ values (nM) for related compounds (Scheme I, Table 1) are: b-SO 200; 1-SO 13; 6-SO-ts 400; 6-SO₂-ts 190; 18-SO 134.

Sulfonamides and others (44-51). A survey of a variety of alternative substituents revealed none conferring high potency including acidic sulfonamides (44 and 45), an amide (46), a diethylacetal (47) and a dialkyne with a terminal $CH_2C \equiv CH$ moiety (50).

Possible bioactivation of diethylacetal 47. Compounds 13, 17 and 47, with $IC_{50}s$ of 7, 5 and 820 nM, respectively (Table 2), were found to be of similar high toxicity to mice treated by the intraperitoneal route (see Ref. 4 for method) with $LD_{50}s$ of 2–3 mg/kg. The low in vitro potency of 47 relative to 13, yet identical $LD_{50}s$, suggests that diethylacetal 47 may undergo bioactivation involving hydrolysis and oxidation via the aldehyde to carboxylic acid 13. This is analogous to the finding of oxidative bioactivation of the corresponding diethylacetal in the trioxabicyclooctane series, without a suggestion as to the identity of the activation product. 1

Effect of trans or cis isomerism on the potency of 5etert-butyl-2-[4-(substituted-ethynyl)phenyl]-1,3-dithianes as inhibitors of [3H]EBOB binding (Table 3)

The *trans* and *cis* isomers are almost equivalent in potency in the ethynylphenyl series (1 vs 1-2a) and the substituted-ethynylphenyl series (17 vs 17-2a and 18 vs 18-2a).

Effect of sulfoxidation on the potency of 5e-tert-butyl-2e- $[4-(iodo-or\ substituted-ethynyl)]$ phenyl]-1,3-dithianes as inhibitors of $[^3H]EBOB$ binding (Table 4)

Oxidation to the monosulfone increases the receptor potency of apolar dithianes **b** and **1** by 17-and 3-fold, respectively, but has no effect or reduces it for more

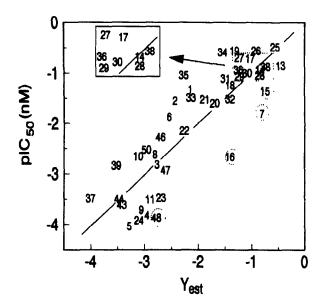


Figure 3. Relation of Y estimate based on MR values of R substituents to receptor potency. $pIC_{50} = -2.05 - 0.0617 \text{ MR} + 2.06 \text{ CO}_2\text{H} + 1.97 \text{ CO}_2\text{R}^{"} + 0.590 \text{ COC} + 2.31 \text{ PO}_3\text{H}_2$. Compound numbers for the data points refer to Table 2. Inactive compounds (12, 40, 41, 45, 49 and 51; IC_{50} s usually >10,000 nM) are not plotted and compound 42 is deleted. Compounds 7, 15, 16 and 48 shown with dotted circles may decompose or hydrate under the assay conditions (see text). The crowded region for numbers is expanded in the inset.

polar dithianes 6, 18 and 17 by 1-, 3- and 13-fold, respectively. Four sulfoxides were examined (b-SO, 1-SO, 6-SO-ts and 18-SO) and each was less active than the corresponding sulfone.

Quantitative SAR

The reference compound 1 and many of its derivatives have IC₅₀ values in the range of 3 to 21 nM and, therefore, bind to the receptor with high specificity. An additional feature of the analogs is the wide variety and pattern of R substituents conferring activity (Table 2) that is interpretable from correlation analysis of substituent constants and receptor potency. The principal factor for the R substituent is the polarizable volume modeled by the molecular refractivity (MR). 10 The Y estimate plot, using dichotomous descriptors to take into account discontinuous changes in molecular structure (i.e. CO₂H and CO₂R", carboxylic acids and esters; COC, ethers; PO₃H₂, phosphonic acids), is predictive of the actual pIC_{50} with a correlation coefficient of 0.854 (n = 44) (Fig. 3). Three of the compounds, under the assay conditions, may decompose (7, 15 and 16) and one may exist as a hydrate (48); deletion of these compounds increases the correlation coefficient to 0.890 (n = 40). This correlation does not include hydrogen bonding which is probably a weak contributor but did not measure up to the other descriptors. In summary, the quantitative SAR points to an interaction of the R substituent involving broad structural specificity, i.e. it is not a well-defined pharmacophore.

Conclusions

Fifty-one 5e-tert-butyl-2e-[4-(substituted-ethynyl)phenyl]-1,3-dithianes were synthesized with variations in the functional group on the ethynyl substituent to optimize their potency as GABA-gated chloride channel blockers ([3H]EBOB binding). Exceptional potency is observed for compounds with carboxylic and phosphonic acid substituents and some carboxylic esters are also very active. When the methylene beta to the carboxylic acid is replaced with oxygen or sulfur, the activity is retained and the alkoxyacetates are also very active. The trans- and cis- isomers are of similar potency, confirming previous observations.^{6,8} Sulfoxidation to the sulfone enhances the potency for apolar dithianes, as reported before, ^{7,8} but reduces it for dithianes with polar substituents suggesting that the overall polarity may be an important factor in receptor binding.

It is of special interest that carboxylic and phosphonic acids reported here (and their salts) include the most potent, water-soluble chloride channel blockers known.

The receptor interaction of the terminal substituent R on the ethynylphenyl moiety is not structurally specific and is therefore not attributable to a well-defined pharmacophore. It is best described by the polarizable volume (or London dispersion forces) modeled as MR¹⁰

independent of whether the substituent is an alkane, alcohol, ester, acid, sulfonamide, ketone, ether or thioether in the hydrocarbon or phosphorus series, despite tremendous potency differences within each type of compound. This allows a selection of the type of substituent for the specific goal to be achieved. These high potency 1,3-dithianes, and particularly the alkoxyacetates, provide a suitable site for functionalization in preparing candidate affinity probes.

Experimental

Chemical procedures

NMR spectra were recorded on a Bruker AM300 spectrometer at 300 (¹H), 75 (¹³C) or 121.5 MHz (³¹P) for solutions in CDCl₃, CD₃OD, acetone-d₆ or dimethyl sulfoxide-d₆ (DMSO-d₆) and are described as number of protons, multiplicity, coupling constant (J) in hertz (Hz), and assignment. Chemical shifts (δ, ppm) are relative to either internal tetramethylsilane (¹H and ¹³C) or external trimethyl phosphate in CDCl₃ (³¹P). Infrared spectra were determined as KBr disks or neat with a Perkin-Elmer 1620 Fourier transform spectrophotometer and are reported as broad (br), strong (s) or medium (m). Low resolution mass spectra (LRMS) were recorded with a Hewlett-Packard 5958 GC/MS system with a direct insertion probe and electron impact (EI, 70 eV) ionization and are given as [M]+ and selected fragment ions (m/z) with relative intensities. High resolution MS (HRMS) were run with VG mass spectrometers (VG Analytical, Greater Manchester, U.K.) as follows: ProSpec for EI; ZAB2-EQ for fast atom bombardment (FAB). The reported elemental analyses were within ± 0.4 % of theoretical values as determined by Texas Analytical Laboratories, Inc. (Houston, TX). Melting points (uncorrected) were measured with an Electrothermal IA9200 or a Fisher-Johns apparatus. Flash chromatography was performed on silica gel 60 (70-230 mesh ASTM from Merck) and preparative thin-layer chromatography (TLC) on silica gel GF plates (Analtech).

Sources and preparation of intermediates

Sources for the chemicals were: 4-iodobenzaldehyde from Karl Industries Inc. (Aurora, OH); 4-pentyn-1-ol from Alfa Products (Ward Hill, MA); diethyl tertbutylmalonate and 1-butyne from Lancaster Synthesis Inc. (Windham, NH); other reagents from Aldrich Chemical Co. (St. Louis, MO).

2-tert-Butylpropan-1,3-dithiol (a) was prepared from diethyl tert-butylmalonate. ¹¹ 4-Ethynylbenzaldehyde (intermediate c for 1) was synthesized by palladium-catalyzed coupling of 4-iodobenzaldehyde with (trimethylsilyl) acetylene followed by selective removal of the trimethylsilyl protective group. ¹² 4-(4-Methoxycarbonyl-1-butynyl)benzaldehyde (intermediate d for 18-2a) was also prepared by the same palladium-catalyzed coupling of 4-iodobenzaldehyde with methyl 3-butynoate. Methyl 5-

hexynoate (intermediate for 22) and methyl 7-octynoate (intermediate for 24) were prepared by esterification of 5-hexynoic acid and 7-octynoic acid, respectively, with diazomethane. 5-Hexynoic acid and 7-octynoic acid were synthesized by oxidation¹³ of 5-hexyn-1-ol and 7-octyn-1-ol (prepared from 3-octyn-1-ol^{14,15}).

Ethyl or methyl (2-propyn)oxyacetate (intermediates for 26 and 27), methyl (3-butyn)oxyacetate (intermediate for 29), methyl (4-pentyn)oxyacetate (intermediate for 31), and ethyl (5-hexyn)oxyacetate (intermediate for 33) were prepared by gradually adding equiv. NaH (dispersion in mineral oil) to the appropriate alkyn-1-ol (0.07 mmol) in anhydrous ether (200 mL) at 0 °C. The solution was then stirred for 1 h at room temperature, cooled on ice, and 1.1 equiv. of ethyl or methyl bromoacetate added. Following stirring overnight at room temperature and filtration of NaBr, the filtrate was washed with saturated NaCl and dried (CaCl₂). The products were clear liquids obtained by distillation (yields 64-84 %). Ethyl (2-propyn)thioacetate (yield 92 %) (intermediate for 35) or diethyl (2-propyn)oxymethylphosphonate (yield 97 %) (intermediate for 39) was prepared by a similar coupling reaction of propargyl bromide with ethyl 2-mercaptoacetate or diethyl hydroxymethylphosphonate, respectively.

Diethyl 3-butynylphosphonate (intermediate for 37) was prepared by dropwise addition of diethyl methylphosphonate (50 mmol) in dry tetrahydrofuran (THF) (30 mL) to a pre-cooled (-20 °C) solution of *n*-BuLi (35 mL, 1.6 M in hexane)¹⁶ and dry THF (35 mL) under a nitrogen atmosphere followed by stirring at -60 °C for 30 min. CuI (10 g) was added and the reaction mixture was maintained at -30 °C for 90 min. (Trimethylsilyl)propargyl bromide (55 mmol) in dry THF (15 mL) was introduced with stirring for 2 h, then the reaction mixture was allowed to warm to ambient temperature and filtered through Celite and the solvents evaporated. The residue was dissolved in EtOAc and washed with aqueous HCl (0.1 M), NaOH (0.1 M) and water, then dried (Na₂SO₄). After solvent evaporation (rotor evaporator), this crude product (5.8 mmol) in dry THF (40 mL) was cooled to 0 °C before addition of a 1 M solution of tetrabutylammonium fluoride in dry THF (9 mL) with stirring at 0 °C for 2 h. The solvents were removed, ethyl ether was added, and the solution was washed with aqueous HCl, NaOH, and NaCl solutions and dried as above. Solvent removal gave a dark liquid product (overall yield 49 %). N-(2-Propynyl)methylsulfonamide (intermediate for 44) and N-(2-propynyl)-p-toluenesulfonamide (intermediate for 45) were quantitatively synthesized by reaction of propargyl amine (2 mL) with the corresponding sulfonyl chloride (1 g) in anhydrous benzene. 17 4-Bromo-1-butyne (intermediate for 51) was prepared from 3-butynyl tosylate and LiBr.14

Characterization of new compounds

Characterization data for the new compounds are given in Table 1 with more complete spectral assignments for representative compounds (13, 17, 25, 26, 34, 36, 38, 17-2a, 18-2a, 18-SO₂ and 18-SO) in each series in the following paragraphs. ¹H and ¹³C NMR data for portions of the molecules other than the R substituents (Table 1) of the remaining compounds were consistent with those reported for the examples below. All compounds (except 17-2a and 18-2a) used in this study were directly derivatized from intermediates 1. b, b-SO, and b-SO₂ without change in conformation so the assignments remain the same as those of 1, b, b-SO, and b-SO₂ as previously described.^{7,8}

Products from condensation of dithiol with aldehyde (scheme I, route A)

Compounds 1 and b were quantitatively synthesized by condensation⁶ of a with c and 4-iodobenzaldehyde, respectively, in formic acid. To prepare 18-2a, a mixture of a (98 mg), d (108 mg) and a catalytic amount of p-toluenesulfonic acid in acetonitrile (3 mL) was stirred for 30 min. After removal of solvents, 18-2a was separated by flash chromatography (ether: hexane 1:3). 18-2a: mp 82 °C; ${}^{1}H$ NMR (CDCl₃) : δ 0.86 (9H, s, $3CH_3$), 1.84 (1H, tt, J = 3.7, 10.3 Hz, H-5a), 2.57–2.77 (8H, m, H-4a/6a, H-4e/6e and 2CH₂), 3.72 (3H, s, OCH_3), 4.85 (1H, s, H-2e), 7.38 (2H, d, J = 8.4 Hz, aromatic), 7.71 (2H, d, J = 8.4 Hz, aromatic); ¹³C NMR (CDCl₂): δ 15.4, 27.0, 33.4 (x3), 34.1, 44.0, 45.9, 51.8, 80.8, 88.3, 122.3, 128.5, 131.6, 139.5, 172.3; FTIR (KBr) 1732 (s, C=O) cm^{-1} ; LRMS (EI) 362 ([M]⁺, 24), 232 ([M-130]+, 24).

Products from palladium-catalyzed alkynylations (scheme I, route B)

Compounds 2-6, 8-12, 18, 20, 22, 24, 26, 27, 29, 31, 33, 35, 37, 39, 44, 45, 47, 49 and 51: To b (0.19 mmol) in dry triethylamine (10 mL) was added bis(triphenylphosphine)palladium(II) chloride (4.7 mg), an excess of the appropriate alkynyl reagent, and a catalytic amount of CuI.6 The mixture was stirred under nitrogen overnight. Following addition of ether, filtration, and solvent evaporation, the residue was dissolved in CH₂Cl₂ or EtOAc which was washed with aqueous NaOH (0.1 N), HCl (0.1 N) and water, then dried (Na₂SO₄). The products were isolated in 90-100 % yield by flash chromatography (hexane-EtOAc or hexane-CH₂Cl₂). Characterization of a representative compound (26) is as follows: ¹H NMR (CDCl₂): δ 0.96 (9H, s, 3CH₃), 1.75 (1H, tt, J = 2.5, 11.1 Hz, H-5a), 2.83 (2H, dd, J = 11.1, 14.1 Hz, H-4a/6a), 2.97 (2H, dd, J = 2.5, 14.1 Hz, H-4e/6e), 3.78 (3H, s, OCH₃), 4.27 (2H, s, OCH₂), 4.52 (2H, s, OCH₂), 5.11 (1H, s, H-2a), 7.41 (4H, s, aromatic); ¹³C NMR $(CDCl_3)$: δ 27.3, 33.5 (x2), 33.9, 46.2, 50.9, 51.9, 59.1, 66.2, 84.2, 86.9, 122.4, 127.8, 132.1, 138.9 170.3; FTIR (KBr) 1743 (s, C=O), 1115 (s, C-O) cm⁻¹; LRMS (EI) 378 ($[M]^+$, 20), 248 ($[M-130]^+$,18); HRMS (EI) calcd $C_{20}H_{26}O_3S_2$ 378.1323, found 378.1322. ¹H and ¹³C NMR assignments for the R substituents of all compounds are given in Table 1 or, if the entry number does not appear there, they are reported in Ref. 9.

Products from derivatization of the ethynyl substituent (scheme I, route C)

Phosphonates 41 and 43: a solution of 1 (2 mmol) and equiv. ethylmagnesium bromide in anhydrous THF (12 mL) was stirred for 1 h at room temperature then cooled to -15 °C followed by addition of diethyl chlorophosphonate (0.6 mL) in dry THF (7 mL). ¹⁸ The reaction mixture was stirred for 3 h at room temperature, then ether was added and the solution was washed with aqueous NaOH (0.1 N), HCl (0.1 N), saturated NaCl, and dried (Na₂SO₄). Flash chromatography (hexane: EtOAc 3:2) afforded 41 (yield 8 %) and 43 (yield 60 %).

Compounds 48 (yield 19 %) and 50 (yield 80 %) were prepared from 1 by the procedure of Taniguchi *et al.*, ¹⁹ and Linderman and Lonikar, ²⁰ respectively.

Products from transformation of R substituent (scheme I, route D)

Formate ester 7: alcohol 6 (0.33 mmol) and formic acid (6 mL) were stirred at room temperature for 2 days. Excess formic acid (96 %) was removed (rotary evaporator) and the product was purified by flash chromatography (hexane: EtOAc 7: 3) to give a white solid (yield 43 %).

Carboxylic acids 13, 17, 19, 21, 23, 25, 28, 30, 32, 34 and 17-2a were obtained by basic hydrolysis of appropriate esters⁹ and 15 was obtained by acidic hydrolysis of 16.9 13: mp 160 °C (dec); ¹H NMR (acetone-d₆): δ 0.96 (9H, s, 3CH₃), 1.70 (1H, m, H-5a), 2.96 (4H, m, H-4a/6a and H-4e/6e), 5.38 (1H, s, H-2a), 7.56 (2H, d, J = 9.0 Hz, aromatic), 7.62 (2H, d, J = 9.0 Hz, aromatic); ¹³C NMR (acetone-d₆): δ 27.3, 33.5 (x2), 34.2, 47.1, 50.7, 81.8, 85.0, 120.0, 128.9, 133.7, 142.7, 154.1; FTIR (KBr) 3200 (br, OH), 1669 (s, C=O) cm⁻¹; LRMS (EI) 276 ([M-44]⁺, 57), 146 ([276–130], 60); anal. C₁₇H₂₀O₂S₂ (C,H,S). 17: mp 221 °C; ¹H NMR (\hat{CDCl}_3) : δ 0.96 (9H, s, 3CH₃), 1.75 (1H, tt, J = 2.7, 11.1 Hz, H-5a), 2.69 (2H, t, J = 5.7 Hz, CH₂), 2.73 (2H, t, J = 5.7 Hz, CH₂), 2.83 (2H, dd, J = 11.1, 14.1,H-4a/6a), 2.96 (2H, dd, J = 2.7, 14.1 Hz, H-4e/6e), 5.10 (1H, s, H-2a), 7.34 (2H, d, J = 8.4 Hz, aromatic), 7.39 (2H, d, J = 8.4 Hz, aromatic); ¹³C NMR (CDCl₃) : δ 15.2, 27.3, 33.2, 33.5 (x2), 33.9, 46.2, 50.9, 81.0, 88.2, 123.6, 127.7, 131.9, 138.0, 177.5; FTIR (KBr) 3110 (br, OH), 1707 (s, C=O) cm⁻¹; LRMS (EI) 348 ([M]⁺, 88), 218 ([M-130]⁺, 78); anal. $C_{19}H_{24}O_2S_2$ (C,H,S). **25**: ¹H NMR (CDCl₃) 0.95 (9H, s, $3CH_3$), 1.75 (1H, tt, J =2.4, 11.1 Hz, H-5a), 2.82 (2H, dd, J = 11.1, 14.1 Hz, H-4a/6a), 2.96 (2H, dd, J = 2.4, 14.1 Hz, H-4e/6e), 4.31 (2H, s, CH₂O), 4.53 (2H, s, CH₂O), 5.11 (1H, s, H-2a), 7.42 (4H, s, aromatic); 13 C NMR (CDCl₃) : δ 27.2, 33.4 (x2), 33.8, 46.1, 50.7, 59.1, 65.7, 83.8, 87.2, 122.1, 127.7, 132.0, 138.9, 175.2; FTIR (KBr) 3000 (br, OH), 1731 (s, C=O), 1131 (s, C-O) cm⁻¹; LRMS (EI) 364 $([M]^+, 24), 289 ([M-75]^+, 8);$ HRMS (EI) calcd C₁₉H₂₄O₃S₂ 364.1167, found 364.1156. 34: ¹H NMR $(CDCl_3)$: δ 0.95 (9H, s, 3CH₃), 1.75 (1H, tt, J = 2.5, 11.1 Hz, H-5a), 2.82 (2H, dd, J = 11.1, 14.1 Hz, H-4a/6a),

2.97 (2H, dd, J = 2.5, 14.1 Hz, H-4e/6e), 3.47 (2H, s, CH₂S), 3.64 (2H, s, CH₂S), 5.10 (1H, s, H-2a), 7.40 (4H, s, aromatic); 13 C NMR (CDCl₃) : δ 21.1, 27.3, 32.6, 33.5 (x2), 33.9, 46.2, 50.9, 83.7, 84.5, 122.8, 127.7, 132.1, 138.6, 176.0; FTIR (KBr) 3000 (br, OH), 1703 (s, C=O), 1299 (s, SCH₂) cm⁻¹; LRMS (EI) 380 ([M] $^+$, 20), 250 ([M-130]⁺, 25); HRMS (EI) calcd $C_{19}H_{24}O_2S_3$ 380.0938, found 380.0947. 17-2a: mp 164 °C; ¹H NMR $(CDCl_3)$: δ 0.87 (9H, s, 3CH₃), 1.84 (1H, tt, J = 3.7, 10.3 Hz, H-5a), 2.57-2.79 (8H, m, H-4a/6a, H-4e/6e and 2CH₂), 4.86 (1H, s, H-2e), 7.39 (2H, d, J = 8.2 Hz, aromatic), 7.71 (2H, d, J = 8.2 Hz, aromatic); ¹³C NMR (CDCl₃): δ 15.1, 27.1, 33.4 (x3), 34.1, 44.1, 46.0, 81.0, 87.9, 122.2, 128.5, 131.6, 139.6, 177.6; FTIR (KBr) 3100 (br, OH), 1708 (s, C=O) cm⁻¹; LRMS (EI) 348 ([M]+, 18), 218 ([M-130]+, 28); HRMS (EI) calcd $C_{19}H_{24}O_2S_2^+$ 348.1218, found 348.1222.

Phosphonic acids 36, 38, 40 and 42: For dealkylation of the phosphonate esters,²¹ a mixture of bromotrimethylsilane (BTMS, 4 mL) and 37, 39, 41, or 43 (each 140 mg) was stirred at room temperature for 1 h. After excess BTMS was removed in vacuo, the product was dissolved in acetone (5 mL) and water (0.5 mL), stirred for 1 h at room temperature, the solvents removed, ether added, and the products extracted with aqueous NaOH (0.2 M, 3 × 20 mL). The combined aqueous NaOH solution was acidified with HCl (2 M) and the product was recovered as a white solid by extraction into CH₂Cl₂ and solvent evaporation. 36 was recrystallized from hot acetone/methanol and 38 from hot ether/hexane. 36: mp 185-186 °C; ¹H NMR (CD_3OD) : δ 0.96 (9H, s, 3CH₃), 1.68 (1H, m, H-5a), 2.01 (2H, dt, J = 8.0, 17.3 Hz, \tilde{CH}_2), 2.68 (2H, dt, J =8.0, 11.3 Hz, CH₂), 2.91 (4H, m, H-4a/6a and H-4e/6e), 5.22 (1H, s, H2a), 7.32 (2H, d, J = 8.3 Hz, aromatic), 7.38 (2H, d, J = 8.3 Hz, aromatic); ¹³C NMR (CD_3OD) 14.4, 28.0 (d, J = 137.7 Hz), 27.7, 34.2 (x2), 34.7, 47.9, 51.7, 81.5, 90.1 (d, J = 20.6 Hz), 124.9, 128.8, 132.7, 140.0; ³¹P NMR (CD₃OD) : δ 26.7; FTIR (KBr) 2900 (br, OH), 1178 (s, PO₂ asym), 1007 (s, PO₂ sym) cm⁻¹; anal. $C_{18}H_{25}O_3PS_2$ (C,H,P,S). 36 was methylated with diazomethane to the dimethyl phosphonate: LRMS (EI) 412 ([M]+, 15), 282 ([M-130]+, 100). **38**: ¹H NMR (DMSO-d₆) : δ 0.90 (9H, s, 3CH₃), 1.59 (1H, m, H-5a), 2.90 (4H, m, H-4a/6a and H-4e/6e), 3.63 (2H, d, J = 8.6 Hz, CH₂P), 4.47 (2H, s, CH₂O), 5.41 (1H, s, H-2a), 7.42 (2H, \bar{d} , J = 8.6 Hz, aromatic); 7.46 (2H, d, J = 8.6 Hz, aromatic); ¹³C NMR (DMSO d_6): δ 27.1, 32.4 (x2), 33.7, 45.9, 49.3, 59.6 (d, J = 13.1 Hz), 65.1 (d, J = 160.3 Hz), 85.7, 86.1, 121.7, 127.9, 131.8, 139.5; ^{31}P NMR (DMSO-d₆) : δ 18.46; FTIR (KBr) 2749 (br, OH), 1100 (s, PO₂ asym), 1018 (s, PO₂ sym) cm⁻¹; HRMS (FAB) calcd $C_{18}H_{25}O_4PS_2Na^+$ 423.0830, found 423.0828.

46 was quantitatively prepared from 14 according to the procedure of Brandsma. 14

Products from sulfoxidation (scheme I, route E)

Sulfoxides and sulfones 1-SO and 1-SO $_2$, b-SO and b-SO $_2$, and 18-SO and 18-SO $_2$ were prepared from 1, b

and 18, respectively, by sulfoxidation with m-chloroperbenzoic acid (MCPBA) and KMnO₄.^{7,8} 6-SO and 6-SO₂ were made by palladium-catalyzed coupling of propargyl alcohol with **b-SO** and **b-SO**₂, respectively. Basic hydrolysis of **18-SO**₂ gave **17-SO**₂. **9 18-SO**: ¹H NMR (CDCl₃): δ 0.98 (9H, s, 3CH₃), 2.16 (1H, m, H-5a), 2.54–2.74 (7H, m, H-4a/e, H-6a and 2CH₂), 3.60 (1H, d, J = 15.0 Hz, H-6e), 3.70 (3H, s, CH₃), 4.48(1H, s, H-2a), 7.32 (2H, d, J = 9.0 Hz, aromatic), 7.40 (2H, d, J = 9.0 Hz, aromatic); ¹³C NMR (CDCl₃) : δ 15.2, 27.1, 32.6, 33.1, 34.0, 51.3, 51.6, 56.5, 68.8, 80.4, 89.1, 124.5, 128.3, 132.0, 132.2, 172.0; FTIR (KBr) 1740 (s, C=O), 1035 (s, S=O) cm⁻¹; LRMS (EI) 378 $([M]^+, 54), 305 ([M-73]^+, 1); HRMS (EI) calcd$ $C_{20}H_{26}O_3S_2$ 378.1323, found 378.1333. **18-SO**₂: ¹H NMR (CDCl₃): δ 0.97 (9H, s, 3CH₃), 2.56 (1H, m, H-5a), 2.62 (2H, t, J = 7.0 Hz, CH₂), 2.73 (2H, t, J = 7.0Hz, CH₂), 2.84-2.96 (3H, m, H-4a/e and H-6a), 3.38 $(1H, d, \bar{J} = 15 \text{ Hz}, H-6e), 3.71 (3H, s, CH₃), 5.03 (1H, s,$ H-2a), 7.39 (2H, d, J = 9.0 Hz, aromatic), 7.45 (2H, d, J= 9.0 Hz, aromatic); 13 C NMR (CDCl₃) : δ 15.3, 26.9, 31.7, 33.2, 33.8, 50.8, 51.7, 55.3, 66.9, 80.4, 89.6, 125.3, 126.8, 129.9, 131.8, 172.1; FTIR (KBr) 1736 (s, C=O), 1302 (s, SO₂) cm⁻¹; LRMS (EI) 330 ([M-64]⁺, 88); HRMS (FAB) calcd $C_{20}H_{26}O_4S_2H^+$ 395.1351, found 395.1355.

Tosylates 6-SO-ts and 6-SO₂-ts: ts chloride (0.48 mmol) and the corresponding alcohol (0.24 mmol)²² were dissolved in acetone (3 mL). A solution of NaOH (28 mg) in acetone: H_2O (1:1, 0.4 mL) was introduced dropwise then stirring was continued at room temperature for 30 min followed by addition of aqueous H_2SO_4 (0.5 mL of 5 M) to stop the reaction. The residue from evaporation of the acetone was dissolved in EtOAc, washed with aqueous Na_2CO_3 (0.1 M, pH 9.8) and dried (Na_2SO_4). Each product was obtained as a white powder (yield 69 %) by preparative TLC (hexane: EtOAc: THF 35: 13: 2).

Receptor assay

The [3H]EBOB binding assay was used to compare the potencies of the dithianes as non-competitive blockers of the GABA-gated chloride channel.²³ Bovine brain cortex (100 g) was homogenized in ice-cold 0.32 M sucrose (1 L) using a Waring blender. The pellet, from centrifugation of the homogenate at 1000 g for 12 min and then of the supernatant at 12,000 g for 40 min, was resuspended in 1 mM EDTA (500 mL) and dialyzed against water at 5 °C for three changes. After another centrifugation at 26,000 g for 40 min, the membrane fraction was resuspended in assay buffer (100 mM NaCl-10 mM Na phosphate pH 8.0) at 2 mg protein 24 /mL and stored in this form at -70 °C for several months until used without loss of activity. The assay involved 0.2 mg of protein in 1 mL of assay buffer containing [3H]EBOB (0.57 nM) alone or with unlabelled 4-sec-butyl-1-(4-cyanophenyl)-2,6,7-trioxabicyclo-[2.2.2]octane (2 µM) to correct for nonspecific binding. Incubations were for 90 min at 37 °C followed by rapid filtration on Whatman GF/C filters, three rinses with ice cold assay buffer (4 mL each), and liquid scintillation counting. The dithianes were added to the assay tubes as solutions in DMSO (5 μ L) followed sequentially by [3 H]EBOB and the membrane preparation each in 0.5 mL assay buffer. The inhibitors were tested in a 1, 3, 10, 30, 100, etc. nM series in three separateexperiments each with triplicate samples. IC₅₀s were determined from plots of log dithiane concentration vs percent inhibition. The standard deviations of the IC₅₀s averaged 11 % of the mean values throughout the studies reported here.

Quantitative SAR analyses

The structure–activity relationships were developed by an extension of the method of Hansch and Fujita. 25 Descriptors tested were MR, 10 hydrogen-bonding counts (evaluated separately for the number of electron pairs on nitrogen and oxygen and those of N-H and O-H bonds) and dichotomous (1.0/0.0) variables to describe the presence or absence of special groups. The best equation for 44 cases (Fig. 3) showed very strong analysis of variance values (T = 3.17-8.28, F = 20.53). Multiple regression was performed in MINITAB 6.1 on an IPM PC by standard techniques. 26

Acknowledgements

The project described was supported by grant number 5 PO1 ES00049 from the National Institute of Environmental Health Sciences, NIH, and a grant from Division Agrovet, Roussel Uclaf (Romainville, France). We acknowledge Gary B. Quistad and David A. Pulman of this laboratory and Jean-Pierre Demoute, John P. Larkin and John B. Weston of Roussel Uclaf for helpful discussions. Special thanks are given to Philip S. Magee of Biosar Research Project (Vallejo, CA) for defining the quantitative relationships between changes in molecular structure and activity.

References

- 1. Casida, J. E.; Cole, L. M.; Hawkinson, J. E.; Palmer, C. J. Recent Advances in the Chemistry of Insect Control II, pp. 212–234, Crombie, L., Ed.; Spec. Publ. 79, Royal Society of Chemistry, Cambridge, 1990.
- 2. Casida, J. E. Arch. Insect Biochem. Physiol. 1993, 22, 13.
- 3. Casida, J. E.; Pulman, D. A. Recent Advances in the Chemistry of Insect Control III, pp. 36-51. Briggs, G., Ed.; Spec. Publ. 147. Royal Society of Chemistry, Cambridge, 1994.
- 4. Casida, J. E.; Palmer, C. J.; Cole, L.M. Mol. Pharmacol. 1985, 28, 246.

(Received in U.S.A. 1 June 1994; accepted 11 August 1994)

- 5. Palmer, C. J.; Cole, L. M.; Larkin, J. P.; Smith, I. H.; Casida, J. E. J. Agric. Food Chem. 1991, 39, 1329.
- 6. Elliott, M.; Pulman, D. A.; Larkin, J. P.; Casida, J. E. J. Agric. Food Chem. 1992, 40, 147.
- 7. Palmer, C. J.; Casida, J. E. J. Agric. Food Chem. 1992, 40, 492.
- 8. Wacher, V. J.; Toia, R. F.; Casida, J. E. J. Agric. Food Chem. 1992, 40, 497.
- 9. Li, Q. X.; Casida, J. E. Bioorg. Med. Chem. Lett. 1993, 3. 2671.
- 10. Hansch, C.; Leo, A. Substituent Constants for Correlation Analysis in Chemistry and Biology, Chap. 5; Wiley; New York, 1979.
- 11. Eliel, E. L.; Rao, V. S.; Smith, S.; Hutchins, R.O. J. Org. Chem. 1975, 40, 524.
- 12. Austin, W. B.; Bilow, N.; Kelleghan, W. J.; Lau, K. S. Y. J. Org. Chem. 1981, 46, 2280.
- 13. Collins, P. W.; Kramer, S. W.; Gasiecki, A. F.; Weier, R. M.; Jones, P. H.; Gullikson, G. W.; Bianchi, R. G.; Bauer, R. F. J. Med. Chem. 1987, 30, 193.
- 14. Brandsma, L. Preparative Acetylene Chemistry, pp. 19, 159, 164; Elsevier; Amsterdam, 1971.
- 15. Hommes, H.; Brandsma, L. Rec. Trav. Chim. 1977, 96, 160.
- 16. Savignac, P.; Brèque, A.; Mathey, F. Synth. Commun. 1979, 487.
- 17. Shriner, R. L.; Fuson, R. C. (late); Curtin, D.Y.; Morrill, T.C. *The Systematic Identification of Organic Compounds*, 6th Edn., pp. 233–234; Wiley; New York, 1980.
- 18. Chattha, M. S.; Aguiar, A. M. J. Org. Chem. 1971, 36, 2719.
- 19. Taniguchi, H.; Mathai, I.M.; Miller, S.I. Org. Synth. 1970, 50, 97.
- 20. Linderman, R. J.; Lonikar, M. S. J. Org. Chem. 1988, 53, 6013.
- 21. McKenna, C. E.; Schmidhauser, J. J. Chem. Soc. Chem. Commun. 1979, 739.
- 22. Wentworth, S. E.; Sciaraffa, P. L. Org. Prep. Proc. I, 1969, 225.
- 23. Cole, L. M.; Casida, J. E. *Pestic. Biochem. Physiol.* **1992**, 44, 1.
- 24. Bradford, M. M. Anal. Biochem. 1976, 72, 248.
- 25. Hansch, C.; Fujita, T. J. Am. Chem. Soc. 1964, 86, 1616.
- 26. Magee, P. S.; Block, J. H.; Henry, D. R., Eds, *Probing Bioactive Mechanisms*, ACS Symposium Series 413; American Chemical Society; Washington, DC., 1989.